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MEMORANDUM L4-19-59A

SUPERSONIC AND MOMENT-OF-AREA RULES COMBINED FOR RAPID
ZERO-LIFT WAVE-DRAG CALCULATTIONS

By Lionel L. Levy, Jr.

SUMMARY

The concepts of the supersonic area rule and the moment-of-area rule
are combined to develop a new method for calculating zero-1lift wave drag
which is amenable to the use of ordinary desk calculators. The total
zero-1ift wave drag of a configuration is calculated by the new method
as the sum of the wave drag of each component alone plus the interference
between components. In calculating the separate contributions each
component or pair of components is analyzed over the smallest allowable
length in order to improve the convergence of the series expression for
the wave drag. The accuracy of the present method is evaluated by com-
paring the total zero-1lift wave-drag solutions for several simplified
configurations obtained by the present method with solutions given by
slender-body and linearized theory. The accuracy and computational time
required by the present method are also evaluated relative to the super-
sonic area rule and the moment-of-area rule.

The results of the evaluation indicate that total zero-lift wave-
drag solutions for simplified configurations can be obtained by the
present method which differ from solutions given by slender-body and
linearized theory by less than 6 percent. This accuracy for simplified
configurations was obtained from only nine terms of the series expression
for the wave drag as a result of calculating the total zero-lift wave
drag by parts. For the same number of terms these results represent an
accuracy greater than that for solutions obtained by either of the two
methods upon which the present method is based, except in a few isolated
cases. For the excepted cases, solutions by the present method and the
supersonic area rule are identical. Solutions by the present method are
obtained in one fifth the computing time required by the supersonic area
rule. This difference in computing time of course would be substantially
reduced if the complete procedures for both methods were programed on
electronic computing machines,



INTRODUCTION

The supersonic area rule presented in reference 1 provides a useful
tool for calculating the zero-1lift wave drag at supersonic Mach numbers
of configurations consisting of slender bcdies, thin wings, and thin
tails. The zero-1lift wave drag of a given configuration was shown to
be the average of the wave drag of a series of equivalent bodies of revo-
lution. Since the development of the supersonic area rule, various
numerical methods, easily adaptable to punch-card computing machines,
have been developed for calculating the zero-lift wave drag of these
equivalent bodies of revolution. To mention a few, references 2, 3, and b,
respectively, present methods based on a knowledge of the area distribution,
the first derivative of the area distribution, and the second derivative
of the area distribution of the equivalent bodies of revolution.

In reference 5 a method was developec for calculating zero-lift wave
drag at low supersonic Mach numbers which does not require a knowledge
of the equivalent bodies of revolution, but uses, instead, a convenlent
set of geometric parameters which are solely a function of the area and
moment distributions of the given configuration. The geometric parameters
consist of double moments of the area distribution of the given config-
uration calculated about both the streamwise and spanwise axes of the
configuration. For this reason the methoc of reference 5 1s referred to
as the moment-of-area rule. With this method, it is practical to make
zero-lift wave-drag calculations with ordinary desk calculators.

Similar to the supersonic area rule, the moment-of-area rule also
evaluates a series expression for the zerc-1lift wave drag. As a result
of a simplifying assumption the moment-of-area-rule series expression
for the wave drag does not converge as raridly as does that for the super-
sonic area rule. The accuracy and the nunber of double moments (terms of
the series) required by the moment-of-ares rule to obtain adequate con-
vergence of the series at supersonic Mach numbers are too great for the
method to be practical with desk calculatcrs. At a Mach number of 1,
however, the number of moments (calculatec about only the spanwise axis
of the given configuration) required are greatly reduced to the point
where desk calculators are practical. It was reasoned, therefore, that
if a convenient and systematic technigque could be developed for calculating
the moments of equivalent bodies of revolition, the concepts of the
moment-of-area rule at Mach number 1 and the supersonic area rule could
be combined to develop a method for calculating zero-lift wave drag for
a wide range of Mach numbers by means of crdinary desk calculators.

It is the purpose of this report to presert the development and evaluation
of such a method. The method will be evaluated by comparing results
computed by the method developed herein with those obtained by other
existing methods of calculation.
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LIST OF IMPORTAWNT SYMBOLS

AL(B,0) coefficients of u Fourier sine series expansion of S'(x,(,6)
b wing span

B L - X

c wing chord at the verticul plane of symmetry

d lateral distance between the longitudinal azxes of a pair of

bodies of revolution
D(p) zero-1ift wave drag of a configuration

D(5,0) zero-1ift wave drag of an equivalent body of revolution of a
contfiguration

K tangent of the sweep angle of the 50-percent chord line of any
sheared punel of a wing or tail surface in dimensionless
coordinates

JA length of a body of revolution

1(5,9) length of an equivalent body of revolution

M free-stream Mach number

Mpk moments of the area distribution of a given configuration
(see eq. (9))

Mok(B,Q) moments of the area distribution of an equivalent body of
revolution

N number of terms or harmonics used in the calculation of wave
drag

q free-stream dynamic pressure

S(x,p,0) frontal projection of the area distribution intercepted on a
given configuration by a set of parallel oblique planes
tangent to the Mach cones

Lo wing maximum thickness at the vertical plane of symmetry

t(x,y) thickness distribution of a configuration



Curtesiun coordinates in the free-stream, spanwise, and
thickness directions, respectively

local dimensionless airfoil-section chord station measured
from the local 50-percent chord

M -1

longitudinal distance between the lateral axes of a pair of
sheared bodies of revolution

angle defining the orientation of the parallel oblique planes
tangent to the Much cones (see sketch (a))

plan-form taper ratio

dimensionless Cartesian coordinutes in the free-stream, span-
wise, and thickness directions, respectively

maximum thickness ratio

dimensionless thickness distribution of the local airfoil
section

dimensionless thickness distribution of one panel of a sheared
plan form

spanwise variation of the dimen:iionless airfoil-section thick-

ness along lines of constant Hercent chord

Subscripts

indices of summation

interference conditions

lower panel of a plan form, 17 < O
total

upper panel of a plan form, n > O

wing panel alone conditions



A

1 properties of an exposed wing measured at or relative to the
average chord at the wing-body juncture

E,H component (body) E or component (body) H
EH,UL interference, specifically, between bodies E and H or upper
and lower wing panels, respectively
Superscripts
! differentiation with respect to a coordinate in the free-
stream direction, except as noted in equation (C2)

~ dimensionless symbol

METHOD
Basic Methods
Before the present method for calculating zero-lift wave drag is
developed, it is well to review briefly the basic concepts of the two
methods upon which the present analysis is based.
Supersonic area rule.- In reference 1 the zero-lift wave drag of
configurations consisting of slender bodies, thin wings, and thin tail

surfaces was shown to be the average of the wave drag of a series of
equivalent bodies of revolution. This fact is given analytically by

o &
b(p) - & fo 2 nl AL (8,6) 1% (1)
n=21

which, for convenience, is written

271
D(B) = — D(p,0)d8 (2)
21 Jo
where
D(B,0) = ﬁ q Z n[A,(8,0)]1% (3)

n=1



As defined in reference 1 the term D(B,8) is the zero-lift wave drag,

as the Mach number approaches 1, of each ejuivalent body of revolution.
For a given free-stream Mach number, or 3, each value of 6 specifies
one member of the series of equivalent bodies of revolution. The
functions An(B,0) are coefficlents of a Fourier sine series expansion
of the first derivative of the area distribution of the equivalent bodies
of revolution and are defined by

o © 3s(x,B3,0)
An(B,0) = = k/h 28(0,5,0) sin(ng)dy ()
— ox
where
X = li%fgl cos @ (5)

The normal cross-sectional area distribution of the equivalent bodies of
revolution, 5(x,B,8), is obtained as the frontal projection of the area
distribution intercepted on the given conf .guration by a set of parallel
oblique planes tangent to the Mach cones. The term 1(B,8) is the length
of the equivalent bodies of revolution. Tie coordinate system, angles,
and Mach planes are defined in sketch (a).

¥
5/

: - By cos 8- Bz sin 8

Sketch (a)

Application of the basic methods is r:stricted to a particular group
of configurations. This group satisfies tie following conditions:



1. Body components and wing and tail components of a configuration
are, respectively, sufficiently slender and sufficiently thin that only
negligible errors are introduced into the calculation of 8S(x,B,6) by
assuming the oblique planes to be normal to the horizontal plane.

ii. The area and first derivative of the area distribution of each
equivalent body of revolution must not have discontinuities.

iii. The slope of the area distribution at the ends of each equiva-
lent body of revolution must be zero.

The accuracy of the results obtained by the supersonic area rule
depends upon the accuracy with which the Fourier coefficients are evalu-
ated and upon the convergence of the series expression for the wave drag
of each equivalent body given by equation (3). This latter dependency
results from the fact that in practice the infinite series must be
terminated at some finite number of terms. 1In references 2 and 3 the
Fourier coefficients are evaluated from a knowledge of the area distri-
bution and the first derivative of the area distribution of the equivalent
bodies of revolution, respectively. In both references N = 25 provides
adequate convergence of the series for configurations which satisfy the
restrictive conditions listed above. 1In reference 4 it was pointed out
that for configurations which satisfied the above restrictive conditions
but also had singularities at the ends of the second derivative of the
area distribution of at least one component of the equivalent bodies of
revolution, a larger number of terms was required to provide adequate
convergence of the series. In this case all of the 49 available terms
were required. Finally, equation (3) must be evaluated for enough values
of 6 to define D(B,0) for integration.

Moment-of'-area rule.- Zero-lift wave-drag calculations by the moment-
of=area rule differ basically from those by the supersonic area rule in
the manner in which the Fourier coefficients are evaluated. Unless all
parts of a configuration lie within the nose Mach cone and the forward
Mach cone from the tail, the equivalent body length, 1(6,9), will be
greater than the actual length of the given configuration for some
values of 6. As shown in reference 5, however, by considering stream-
wise body extensions of vanishingly small cross-sectional area, one can
assume the length of each equivalent body of revolution to be constant
and equal to or greater than the length of the longest equivalent body,
say 1. In this manner equation (5) becomes

X = 1/2 cos ¢ (6)

As a result of this assumption the moment-of-area series expression for

the zero-lift wave drag does not converge as rapidly as does that for the
supersonic area rule. Upon substitution of equation (6) in equation (4) the
Fourier coefficients can be expanded in a finite series expressible in



terms of a convenient set of geometric parameters, Mpk, and powers of
B cos 8 such that

P n=2
AL(B,0) =2 (%) Z Ly (B cos 0)¥ (7)
p=0
where n-p-2 2\P+k
Lnp = 2 Enpk 7) Mok (8)
k=0

These geometric parameters are double moments of the thickness distri-
bution of the given configuration calculated about both the streamwise
(x) and spanwise (y) axes of the configuretion. The origin of the
coordinate system is located at the center of the configuration as
indicated by the limits of integration in the following expression for
the double moments (hereinafter referred to as moments):

RS
g -2 [7 [F seondiPey e (9)
& "=

where t(x,y) is the thickness distributicn of the given configuration
and b/2 is the wing semispan. In equaticn (8), gnpk are constant
coefficients given by

1
= (n-p-k-2 1/2)(n+pik) ]! oK oP
2 ( P ) [( / )( AL )] E__E_ for even values

(-1) ey
[(l/2)(n-p-k—2)]l ki pl of (n-p-k)

zero otherwise
(10)

Upon substitution of equation (7) in equation (3) and use of the result
in equation (2), the integration with resyect to 0@ can be accomplished
in closed form. In this manner the zero~lift wave drag at any supersonic
Mach number is expressed in a series in pcwers of [ with coefficients
which are functions of the moments; that is,

D(B) = a Z nDy (B) (11)

n=2



N on 5 o\ 1 ax | EF 8
) =g [ a0 e -4 (2) 4 S| ) mats s 007 a0
(o] o p:(J)

(12)

It is practical to determine the moments and make subsequent calcu-
lations of the zero-lift wave drag with ordinary desk calculators. Con-
sequently, calculations by the moment-of-area rule are relatively simple
compared to those by the supersonic area rule. However, as a result of
using a constant length for each equivalent body of revolution, the
moment-of-area-rule series expression for the wave drag does not converge
as rapidly as does that for the supersonic area rule. Therefore, in
order to obtain similar solutions by both methods more terms of the
moment-of-area-rule drag equation must be employed. As pointed out in
reference 5 for the moment-of-area rule and demonstrated in reference &L
for the supersonic area rule, the convergence of the series can be
improved for each method by calculating the total zero-lift wave drag
as the sum of the wave drag of each component alone plus the interference
between components. For this procedure the smallest allowable length of
each component or pair of components is employed in calculating the
separate wave~drag contributions.

Development of the Method

The present method is developed by combining the concepts of the
moment-of-area rule at Mach number 1 and the supersonic area rule. This
combination consists merely of calculating the zero-lift wave drag by
the moment-of-area rule at Mach number 1 for each equivalent body of
revolution. For Mach number 1, equation (12) depends only upon the
moments for p = O, and can be written

D, (M=1) = k4 <%>4Ln02 (13)

where

Ne2 \k
Lno = }: Enok <%) Mok (1k)
k=0

Hence, for Mach number 1, equation (11) becomes



10

q

\\/jg

D(M=1) = nDn ‘M=1) (15)

I
L

In view of equation (13), the zero-lift wase drag, at Mach number 1, of
the equivalent bodies of revolution regquired by the supersonic area rule
can be expressed as a function of the moments and lengths of the equiva-
lent bodies as

D(p,0) = £ q {4 [T(EQTJ ‘j 1Dy (8,0) (16)
where -
Dy (B,0) = [Ing(B,0)1° (17)
and

Lno(B,0) = j{: Enok [;zﬁlgy]kMok(B,G) (18)

k=0

In equation (18), the quantities Mgy (B,6) represent the moments of the
equivalent bodies of revolution calculated about only the spanwise axis
through the midpoint of the length of each equivalent body (see eq. (9)
for p = 0). From a comparison of equations (3) and (16) it is clear

that U L——g—
1(B,8)
Even though the concepts of the moment-of-irea rule are employed to
evaluate the Fourier coefficients, it shou.d be noted that the actual
length of each equivalent body, 1(B,8), is considered (see egs. (16)
and (18)). Finally the zero-lift wave dra,; of a given configuration is
obtained by use of the results of equation (16) in equation (2).

4
J D(B,0) is merely the squire of the Fourier coefficients.

Convergence problem.- Use of the moments to evaluate equation (17)
permits zero-lift wave-drag calculations to be made with ordinary desk
calculators. Experience has demonstrated, however, that the magnitude
of the moments are such that six significant figures are required to
obtain accurate results. As a consequence, it is not practical to make
calculatlions for more than nine terms of the series (N = 9) using desk
calculators. In general, as few as nine terms will not provide adequate
convergence of the series (see ref. 2). However, as suggested in ref-
erence 5 and demonstrated in reference 4, Jor any given number of terms
the convergence of the series can be impro-red for multiple component
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configurations by calculating the total zero-1lift wave drag as the sum

of that for each component alone plus the interference between components.
As a result of the ease in finding Mgk (B,0) for the various components
of a given configuration compared to finding the area, the first deriva-
tive, or the second derivative of the area distribution of the components,
the present method is more easily adapted to total zero-lift wave-drag
calculations by this technique than are the methods of references 2, 3,
and 4.

Dimensionless drag equations.- Zero-lift wave-drag calculations by
the present method are most conveniently made using a dimensionless
coordinate system. Consequently, the dimensionless cuantities and zero-
1ift wave-drag equations for the present method are presented in

appendix A. In appendix A the relationship between the dimensional and
dimensionless zero-lift wave-drag equation for airplane-type configura-

tions is shown to be
s n (e TS0 8

6(5%):%];%5@%,9)@9 (20)

(58, o) - L e, } ni o (5.2, ’) (=1)

B, (B 5, 9> = [ﬁno (B >, e)f (22)

Lno( e ) ygmk[ Bb/, TMOK< e> (23)

The subscript 1 in equation (19) indicates properties of the exposed.
wing measured at or relative to the average chord at the wing-body
Juncture,

~—~

19)

where

Basic data, moments and lengths.- Success of the present method

obviously depends upon a convenient technique for finding the moments
and corresponding lengths of the wvarious components of the equivalent
bodies of revolution of a given configuration. The area distributions
of body-of-revolution components of a configuration are independent of




Mach plane orientation. Conseguently, the noments of body=-of-revolution
components are identical for all equivalent bodies of revolution. Further-
more, within the slenderness requirements of the basic methods, the normal
cross-sectional area distribution of body-of-revolution components,

S(x), and the actual length of the body, I, can be employed. Hence

for bodies of revolution

4

Mok = % L/:5 5(x)xEax (2ka)

L
2

or in dimensionless coordinates (see appendix A)

~ 2 oy < .
Mok = = S(e)e de (24b)
<%/

The area distributions and lengths of wing and tail components, on
the other hand, change with Mach plane orieatation. The concept of
"sheared" configurations, which is briefly reviewed in appendix B, can
be employed to find the area distributions of these equivalent-body
components. In reference 4, the contributisn of wing and tail components
to the area distribution of the equivalent ocodies of revolution was
determined as a function of the tangent of the sweep angle of the
50-percent chord line of each sheared half plan form. For a given Mach
number and Mach plane orientation, this single parameter (K, in dimen-
sionless coordinates) relates each sheared aalf plan form to the proper
equivalent body by the expressions (see appsndix B)

Ky = Ko = B cos 3

ol

(QD)
K = K + B - cos 3
L o) (o4

where Ky 1s the tangent of the sweep angls of the S0-percent chord line
of the given dimensionless plan form; Ky and Kj, represent the tangent

of the sweep angles of the sheared dimensionless half plan forms in the
positive and negative 1 directions, respectively. As indicated by the
subscripts U and L, these half plan forms nereinafter will be referred
to as the upper and lower sheared half plan forms, respectively. The
single parameter K 1s also used in appendix C of this report to deter-
mine the moments and lengths of the sheared half plan forms. From
equation (25) it can be seen that the quantities in equations (20) to (23)
which are a function of Bb/c and 8 are a function of (Bb/c)cos 0.
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Procedure for Applying the Method

General configurations.- The total zero~lift wave drag of any general
configuration is calculated by the present method as the sum of the wave
drag of each component alone plus the interference between all pairs of
components, as was described in reference k. TFor instance, for a config-
uration with two components, E and H, the total zero-lift wave drag can

be written
By (82) =B (52)+ B (5 2) » 3 (5 2) (26)

where the first two terms represent the zero-1ift wave drag of each
component alone and are evaluated by equations (20) to (23) using the
subscripts E and H 1in each of the equations. The last term represents
the mutual interference between the two components and is evaluated by
equation (20) using the subscripts EH and the following equations:

Do <b %, 9> ° [ZEH(BQ>C, 9)}4 ij nﬁEHn <’B %’ ?) (1)
b (B & 9> T (B o 9> (28)

1l

ge
:3:31
N
ol
(@]
A
1]

n-2 :
~ b ) o . b
g \P & é> }: Enok [ZEH(Bb/c, e)]kMEok (E = g) (29)
k=0
n-2
o b B c ~ b
LHnO (B [ 6) = kZ(; gnok [lEH(Bb/C, Q)TMHOK 63 c? 9) (30)

It is emphasized that all moments are calculated about the midpoint of the
smallest allowable length of each component or pair of components for which
the drag is to be computed. That is, in calculating the zero-lift wave
drag of each component alone the smallest allowable length is obviously

the separate length of each component. For the interference term, however,
Mo (Bb/c, 6) and My, (Bb/c, 6) are calculated about the midpoint of the

total combined length of any two components.
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Complete wings.- Assume that the total zero-lift wave drag is to
be calculated at a specified supersonic Mach number, Mpgx, for a complete
wing with 0° sweep of the 50-percent chord line (Ko = 0) as shown by the
solid lines in sketch (b). With regard to the airfoil section it should
be recalled that at super-
sonic Mach numbers for which
the Mach waves of the flow are
inclined ahead of the wing
leading edge the theory is
Koyt applicable for arbitrary air-
foil sections; that is, both
round- and sharp-nosed
sections, On the other hand,
at higher supersonic Mach
numbers for which the Mach
waves of the flow are
inclined behind the wing
leading edge, the theory is
applicable to wings with
only a sharp-nosed airfoil
section. TFor the problem
assumed above consider a
Sketch (b) wing with sharp edges.

~
Direction of
or flow

The calculations are initiated by a daztermination of the limiting
values of KU and KLm from equation (25) for 6 = 0. The corre-

sponding uhedred configuration is shown in sketch (b) by the dashed lines.
(iote that IKUmln|and lKLmaxl are greater than 1. If a round-nosed
airfoil section had been considered,
these limiting values would be
restrizted to values less than 1.)
The quantity Dy(pb/c, 6) or Dy(K)

is detzrmined for one wing panel
alone at arbitrary but sufficient
values of K +to define the curve
shown in sketch (c). Addition of the
two expressions in equation (25)
relates the upper and lower wing
panels in ordered pairs

Dy (K)

= % < = Ky + K1 = o (31)
+ + + + K
K ' i/m:o ' L mox By use of equation (31), the data
oKkutr 0582 F —b Ky tor 0582 F o] <€> in sketch (¢) are used to make
Ko individual or combined plots of the
F_“_“ig*’ <§3 zero-11ift wave drag of each wing
Ky for 0s8< X AKLmy059s-; panel alone as a function

Sketch (c)



of (Bb/c)cos B (see sketch (d)). Since
sheared configurations for complete PRI
wings are symmetrical in ﬁ/2, positive
values of (Pb/c)cos 8 are more con-
veniently used for the abscissa for

/2 > 6 > 0; hence, in sketch (d)

0 =(Bb/c)cos 6 < KLyyx- The inter-
ference between wing panels is calcu-
lated as a function of Kp but plotted
directly as a function of (Bb/c)cos 6

as shown in sketch (d). The total zero-
1lift wave drag or the separate contri-
butions can be obtained from the proper
curve in sketch (d) by replotting the
results against 6 for gx/2 =06 > 0.
The resulting plot is then integrated
graphically and this result is divided
by /2 to obtain a dimensionless value
of the zero-1lift wave drag at Mpay or
(Bv/c)yax- The drag in pounds is, of
course, given by equation (19). It

will be noted that for a complete wing

U, upper panel alone

<--L,lower ponel alone

2 KL‘max

BLcosg

(b1/b) and (71/7) in equation (19) are © - -
unity. Z/)\\\’//////”_——

UL, interference

Once the zero-1lift wave drag is
calculated at Mpgx one has inher-

Sketch (4)

ently obtained the data from which the drag can be calculated for all

1 €M< Mnax. For example, for 1 < M, < Mpgyx equation (25) yields a new
maximum value of (Bb/c)cos 6 as Ky, (see sketch (d)). Hence, for
(Bb/c)s = Kr,,, the portion of the curve in sketch (a) for

0 <(Bb/c)cos 6 < K, can be replotted against ©
graphically averaged, and divided
by n/2. In this manner the zero-
1lift wave drag can be obtained for

all 1 <M< Mpgx or KUrmin!
0 <(Bb/c) <(Bb/c)max- AN
/
/
The basic data for one com- Sivection. of /
plete wing panel shown in air fiow ,/

for xn/2 > 6 >0,

X

sketch (¢) can be used to cal-
culate the drag of each wing
panel of the complete wing shown
in sketch (e). This wing
differs from that of sketch (b)
only by the sweep angle of the
50-percent chord line, Ko = 1.

Sketch (e)
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From use of Ky = 1 in equation (31) it i: a simple matter to obtain
D(pv/c, 6) from the data of sketch (c¢) in new ordered pairs for
Ko S Ky, S-KLmax' With the aid of equatior (25) these results for the
wing panels alone are plotted for 0O <(Bb/c)cos 8 <(KLpax - 1) as shown
in sketch (f). Because the separate wing
panels of the cheared configurations of the
Ko = 1 plan form combine in different ordered
pairs from thoce for the Kg = O plan form,
the interference between wing panels will be
different for each plan form. Consequently,
<53 additional calculations must be made for the
interference between wing panels for the
Ko = 1 plan form. It should be noted that
the range of Mach numbers covered by the
value (Bb/c)cos 6 = (KLpax = Ko) will be
different for each plan form.

B(BL.9)

U+t

Airplane-type configurations.- For a wing-

u body combinution the zero-1ift wave drag of the
body alone is cbtained from one set of calcula-
tions, since, as noted earlier, 5(x,B,9) for
each equivalent body of this component is
assuned equal t> S(x). The wing-body inter-
o ' —w=fA2csg Tference is calculated as a function of K or

a1 (Bb/c)cos 6 and averaged graphically for
selected values of Bb/c. The exposed wing is
treated in the same manner just described for
a complete wing. In fact, in some instances,
the basic data, ﬁw(K), for the wave drag of one panel of a complete wing
can also be used to calculute the wave draz of each exposed wing panel
alone of similar wings mounted on a body. 11l 1s possible whenever the
dimensionless plan form of the exposed winz punel und of the complete wing
panel are identical. As noted in appendix A, exposed wing panels are made
dimensionless with respect to conditions ab the wing-vody Juncture. Hence,
5(K) for a complete wing panel can be used to culculute the wave drag of
an exposed wing panel alone for all struigit-line plan forms with zero
taper ratio. TFor example, the wave drag ol euch of the exposed wing panels
of the wings of sketches (b) and (e) mount:d on = body can be computed as
previously described using the datu of skesen (c¢) for complete wings.
The interference between exposed wing pane.s must be obtained by addi-
tional calculations since, for a given K, the combined length of both
sheured wing panels is different for the e«(posed und complete dimensionless
wings. In computing the drag in pounds th: proper values of (bl/b)
and (71/7) must be inserted in equation (L17).

Sketch ()

Rather than present zero-lift wave drag as a function of Mach number,
it hue been found convenient to plot reduc:d drag as o function of Bb/c.
One cun express equation (19) in coefficient form us
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B CHIOIOR®) =

The wing aspect ratio A i1s given by b2/S and the airfoil-section
maximum thickness ratio, T, is given by tg/c. Hence eyuation (32) can

be written
Cp o1} . b
L . LS S I A I o o 22
A2 ﬁ(b) <T>D<B c) (53)

Since b/c is proportional to aspect ratio, equation (33) is merely an
expression of the linearized supersonic-flow similarity parameters; that
is, the reduced wave-drag ccefficient, CD/ATg, is a function of only BA.
Thus, by making the calculations in dimensionless coordinates for a single
configuration, one inherently computes the zero-1lift wave drag for an
entire family of related configurations.

Systems of bodies of revolution.- The principles of the foregoing
analyses of airplane-type configurations can also be applied to systems
of bodies of revolution., One first renders the system dimensionless as
outlined in appendix A. The zero-1lift wave drag can be calculated as
noted earlier for each body alone, The interference between all pairs
of bodies can be obtained in a manner similar to that described for
complete wing panels merely by using the parameter & (see appendix B)
rather than K. A technique for finding the equivalent-body length and
the moments of any two sheared bodies about the midpoint of their combined
length as a function of & can be obtained by following the same
technique outlined in appendix C for the interference between wing panels,
It should be noted, however, that the sheared configurations of a pair of
bodies of revolution are symmetrical in x rather than n/2 as 1in the
case of wings and horizontal tails. If an electronic computing machine
is available, more accurate results for systems of bodies of revolution
can be obtained more rapidly by the method of reference 4 than by the
present method.

EVALUATION OF THE METHOD

The accuracy and computational time required of the present method
will be evaluated by comparing zero-lift wave-drag solutions for several
simplified configurations computed by the present method with solutions
obtained by other methods. Sample calculations for the solutions obtained
by the present method are presented in appendix D.
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Accuracy

Single body of revolution.- Consider the very special case of a Sears-
Haack body of revolution at M = 1. As shown by slender-body theory in
reference 6, this body has minimum zero-lift wave drag at sonic speed
for a given length and volume. The area cistribution of this body is

given by
27 3
5(x) = So[l - <%> } (34)

where S5 1s the maximum frontal area of the body and 1 1is the total
body length.

As shown in appendix A of this report the zero-1lift wave drag of a
system of bodies of revolution can be expressed in terms of the dimension-

less drag as
2
- xq (225 (8 & 5
D = nq (%7§> D (% L) (39)

According to reference 6 the slender-body-theory value of D(pd/1) at
M=11s 9/8. Zero-1ift wave-drag calculations by the present method yield
exuctly 9/8 (see appendix D). It is interssting to note that the series
expression for the zero-lift wave drag converges absolutely for the term

n = 2, The contribution of all other terrs is identically zero. This
result further demonstrates thut a Seurs-Haack body has minimum zero-1ift
wave drag at M = 1 for a given length and volume. That is, Moo is
proportional to the volume of a configuration (see eq. (9) for p = 0)

and this moment alone appears only in the n = 2 term (see appendix A).

Pair of bodies of revolution.-
Dimensionless zero-1lift wave-drag
Ye Yn values have been calculated at M =1
L+ L for the pair of Sears-Haack bodies
T shown in sketch (g). Values computed
by the present method (see appendix D)
are tatulated below together with
! ‘ analytical values obtalned by slender-
9 ke 0 e | Body 1 body theory from reference 4. The
; total zero-lift wave drag calculated
| i | by the present method is accurate to
_w ° Lo within 5.3 percent of the slender-body-
theory solution of reference L. As
. noted earlier for a single body of
Sketch (g) revolution, values for the bodies
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Bls(a/1)] for bodies in sketch (g), M = 1

Drag component | Present method { Reference k4
Body E alone 1.125 1.125
Body H alone 1.125 1.125
Interference L2004 .340
Total 2.450 2.590

alone by the present method are in exact agreement with the analytical
solutions of reference 4 but the interference values agree to within only

40 percent, This large discrepancy for the interference calculation
results from the fact that the moments for this calculation must be
calculated about the midpoint of the combined length of both bodies, a
length longer than that of the individual bodies. As noted in refer-
ence D, when this occurs the contributions to the drag of the terms
for n > 9 (higher harmonics) become significant.

Complete wings.- Zero-Lift wave-drag calculations have been made for
two families of complete wings with biconvex airfoil sections and a
constant thickness ratio from root to tip. One family has a diamond
plan form (Ko = O) and the other a triangular plan form (Ko = 1) as
shown in sketches (b) and (e), respectively. The linearized theory
zero-11ft wave-drag solutions for these wings have been obtained in
reference 7 by a stepwise integration of the pressures over the entire
wings. The zero-1lift wave-drag results from reference 7 and those
obtained from calculations by the present method for N = 9 (see appen-
dix D) are presented in figure 1 in reduced dragecoefficient form. In
order to evaluate the present method relative to the method of the super-
sonic area rule and the moment-of-area rule, zero-lift wave-drag solutions
for both families of complete wings were calculated by both latter methods,
the two methods upon which the present method is based. These latter
results are also presented in figure 1. Results for the superscnic area
rule are usually obtained by the method of reference 2, In this report,
however, the results for N = 9 were obtained by the technique of the
present method by calculating the total moments of each equivalent body
about the midpoint of the total length of each sheared configuration.
By this approach the equivalent-body zero-1lift wave-drag equations for
the present and supersonic-area-rule methods can be shown to be identical
theoretically. Tumerical calculations by both methods (I = 9) for several
egulvalent bodies agreed to within one half of 1 percent. Results for
the moment-of-area rule were calculated for N = 9 by the alternative
drag formula given in appendix C of reference 5, As iIndicated in figure 1,
for the range of values of Bb/c for which data are available, the present
method yields results which differ from the linearized-theory solutions
of reference 7 between 1 and G percent. The data of figure 1 also
indicate that the solutions obtained by the present method are more
accurate than those obtained by the other two methods. Furthermore,
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solutions obtained by the supersonic area rule are more accurate than
those obtained by the moment-of-area rule, The more accurate solutions
by the present method are a result of calculating the drag of the wings
by parts. Since the solutions obtained by the three "series" methods
were calculated for N = 9 in each case, the relative accuracy of the
solutions obtained by these three methods is associated with the relative
rapidity of the convergence of the series expression of the zero-lift
wave drag for each method. The relative convergence of the series for
the three methods will be discussed subsequently.

Airplane-type configurations.- The procedures for applying the present
method to airplane-type configurations have been discussed earlier in
this report and in appendix A, Although no calculations have been made
to evaluate the accuracy of the present method for calculating the zero-
1ift wave drag of such configurations relative to other methods, it is
felt that differences in such solutions would be comparable to those
discussed above for complete wings. However, it should be noted that,
as discussed in appendix A, some errors, not present in the case of
complete wings, might be introduced into thz calculations by the present
method as a result of assuming a constant wing station for the wing-body
Juncture when computing the moments of the =2xposed wing panels. These
errors will be more significant in cases of severely indented bodies and
in cases where the body radius is of the same order of magnitude as the
wing thickness at the wing-body Jjuncture.

Convergence problem.- As mentioned in reference 5, in the Fourier
series analysis of the slope of the area distribution of a configuration
(a type of analysis basic to the present method, the supersonic area rule
and the moment-of-area rule), the series coiverges most rapidly when the
smallest allowable length of the configuration is used in the wave-drag
analysis. The total zero-lift wave-drag results shown in figure 1 for
the moment-of-area rule used a constant total length as specified in
appendix C of reference 5. The supersonic area rule employed the total
length of each individual sheared complete w#ing. Use of the individual
total lengths with the supersonic area rule results in a marked increase
in the rapidity with which the series converges. This is indicated in
figure 1 by the larger values of the wave drag obtained by the supersonic
area rule as compared to those obtained by the moment-of-area rule. The
total zero-lift wave drag was calculated by the present method as the
sum of the wave drag of each wing panel aloie plus the interference between
wing panels, The individual length of each wing panel of each sheared
configuration was used for the drag calculations of each wing panel azlone
and the combined length of both sheared wingzs panels was used for the
interference calculations. In this manner the present method provided
an additional increase in the rate at which the series converges. Thus,
the values of the wave drag in figure 1 for the present method are greater
than those obtalned by the supersonic area rule and the moment-of-area rule.
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Regardless of whether the total zero-1ift wave-drag calculations are
made using the smallest allowable length or the total length of each
sheared configuration, the interference calculations in both cases are
made using the total length. On the other hand, calculations of the
wave drag of each wing panel alone are made using either the length of
each sheared wing panel or the combined length of both sheared wing puanels.
Hence, the magnitude of the increased accuracy of the total zero-1ift
wave-drag calculations afforded by the use of the smallest allowable
length depends upon the ratio of the length of each sheared wing panel
alone to the combined length of both sheared wing panels. For convenience
this ratio is designated by €. The smaller the value of € compared
to unity the greater will be the improvement in the drag calculations as
a result of using the smallest allowable rather than the total length.
This fact is demonstrated by the data in figure 1. Up to a Mach number
for a sonic leading edge for the diamond plan form (Bb/c =1 in
fig. 1(«)) € = 1 for both wing panels of all sheared configurations;
hence, the single curve for the results of the present and supersonic-
area-rule methods in this region. For {b/c > 1, € is less than 1
for only some of the sheared configurations and is also the same value
for both wing panels. In this region, therefore, only a very slight
improvement in the accuracy of the solutions obtained by the present
method is realized compared to solutions obtained by the supersonic area
rule, For the triangular plan form (fig. 1(b)) e = 1L only for 6 = x/2
or for Bb/c = 0. For all other sheared configurations e < 1 and has
different values for each wing panel. Thus, the accuracy of the solutions
obtained by the present method for the triangular plan form is substan-
tially improved compared to the accuracy of the solutions obtained by the
supersonic area rule.

In view of the benelits demonstrated above resulting from the calcu-
lation of total zero-lift wave drag by parts, the question naturally urises
as to the possibility of using this procedure in conjunction with the
supersonic area rule. The method of reference 2 cun, in fact, be udapted
to such a procedure. This, however, 1s not recommended unless one is
prepared to accept a two- to threefold increase in work load.

Computing Time Regquired

The method of reference T uses the pressures over the entire wing
plan form to calculate total zero-lift wave drug. These calculations are
necescorily tedious ana Jlengthy., The actual computational time is not
given in reference 7. Illowever, from a comparative examination of the
wave-drag eyuations this method obviously requires more computational
time than tae present method or the two methods upon which the present
method is based. Furthermore, the lutter three methods each employ
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some geometric property of the configuraticn to evaluate the Fourier
coefficients of a series expression for the wave drag. For these reasons
the computational time required of present method is evaluated relative
to only the supersonic area and moment-of-zrea rules. The computational
time in each case is based on a series for N = 9,

The basic differences in the computational time required of the
moment-of-area rule, the present method, arnd the supersonic area rule
are a function of the time required by eacl: method to obtain the respective
geometric properties used to evaluate the Fourier coefficients. The actual
time, of course, depends upon the complexity of each configuration. The
total zero-lift wave-drag calculations for the diamond-plan-form wing by
the moment-of-area rule required 20 man-hours with desk calculators. By
this method the Mpk for only the original complete wing were required.
o graphical averaging was required. The present method, applied with
either the smallest allowable or the total length, required 100 man-hours
with desk calculators. By this method the Mg (Bb/c, 8) for 20 sheared
configurations were used., The wave-drag results for these configurations
were graphically averaged. No calculations were actually made by the
supersonic area rule; however, a compubting time of 500 man-hours has been
estimated for this method by the authors of reference 2. This large
eslimate was based pr marily upon the determination, with desk calculators,
of the aren distribution of the 20 sheared configurations and secondarily
upon a cruphical averaging of the wave-dras results.

The basic data for the wave drag of eecch sheared wing panel alone
of the diamond plan form was used in the menner described in the METHOD
section to obtain the wave drag of each wirg panel alone of the triangular
plan form. The only additicnal calculatior. required to obtain the total
zero-1lift wave drag of the triangular plan form by the present method was
that for the interference between wing panels and, of course, the graphical
averaging of all results. In this manner «nly 30 man-hours were regquired
by the present method to obtain the result: for the triangular-plan-form
wing as compared to 100 man-hours for the ciamond-plan-form wing. Similar
to the case of the diamond-plan-form wing the moment-of-area-rule calcu-
lations required 20 man-hours for the triargular plan form. Since the
method of reference 2 does not normally yield the wave drag by parts,
zero-lift wave-drag calculations by this method would also require an
estimated 500 man-hours for the triangular.-plan-form wing.

The 500 man-hour computation for the cupersonic area rule was made
without a knowledge of reference 4 or the present report which both utilize
the parameter K to organize the basic data for wings. It is reasonable
to expect, therefore, that use of the paraneter K, and/or making calcu-
lations for related wing by parts, would result in a lower estimate of the
computing time reguired of the supersonic crea rule. TFurthermore, the
differences in computing time, of course, vould be substantially reduced



23

if the complete procedures for all methods were programed on electronic
computing machines, It is emphasized, however, that the time required
to program each method would be different and is unknown at present.

CONCLUDING REMARKS

A method has been developed for calculating zero-lift wave drag
by combining the concepts of the supersonic area rule and the moment-
of-area rule, The accuracy of the method has been evaluated by comparing
total zero-lift wave-drag solutions obtained for several simplified con-
Tigurations by the present method with solutions given by slender-body
and linearized theory. The accuracy and computing time required of the
method have also been evaluated relative to the two methods upon which
the present method is based. The following remarks are warranted as a
result of the development and evaluation of the present method.

Results are obtained by the present method from a series expression
for the zero-lift wave drag which can be evaluated with an ordinary desk
calculator. The total zero-lift wave drag of a configuration is calcu-
lated as the sum of the wave drag of each component alone plus the inter-
ference between components. Total wave-drag results for several simplified
configurations demonstrated that, by calculating the total drag by parts,
nine terms provide adequate convergence of the series. Total zero-lift
wave-drag results obtained by the present method differed from solutions
given by slender-body and linearized theory by less than 6 percent for
all configurations investigated. For nine terms of the wave-drag series,
these results represent an accuracy greater than that obtained by the
moment-of-area rule and greater than or equal to in some isolated cases,
the results obtained by the supersonic area rule. The greater accuracy
of the present method is a direct result of calculating the total zero-
1lift wave drag by parts.

The computational time required by the present method was five times
as great as that required by the moment-of-area rule and one-fifth of
that required of the supersonic area rule. The shorter computing time
of the moment-of-area rule, however, is of no real conseqguence in view
of the poor accuracy of results obtained by this method. The differences
in computing time, of course, would be substantially reduced if the
complete procedures for all methods were programed on electronic computing
machines.

As a result of making the calculations in dimensionless coordinates
the basic data obtained for a configuration at a specified supersonic
Mach number can be manipulated to obtain the total zero-lift wave drag
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of the given configuration for all lower supersonic Mach numbers with 2
minivun of additional calculations. Furthzrmore, the basic data for a
given configuration which is used to valculate the wave drag of each wing
panel wlone can be munipulated to provide the wave drag of each wing panel
alone of un entire fmily of similur wings which differ only in sweep.

Ames Research Center
I[lational Aeronautics and Space Administration
Moiffett Field, Callf., Jan. 19, 1959



APPEIDIX A

DIMENSTIONLESS ZERO-LIFT WAVE-DRAG EQUATIONS

In order to take advantage of the decrease in the number of parameters
resulting from similarity considerations, and to facilitate the calculua-
tions, the guantities defined in the METHOD section can be made
dimensionless.

ATRPLANE-TYPE CONFIGURATTIONS

Complete Wings Alone

As shown in appendix B of reference %, all x coordinates can be
divided by the half-chord of the wing at the vertical plane of symmetry,
c/'2; all y coordinates can be divided by the semispan of the complete
wving, b/2; and all =z or thickness coordinates, t, can be divided by
the wing maximum thickness at the vertical plane of symmetry, ty.  In
this manner the dimensionless quantities and their relationship to the
corresponding dimensional quantities can be defined us follows: The
dimensionless Cartesian coordinates are defined by

<
-2
S ) (A1)
Fo= _Z_ 3 _ t(X,y) _ t(éﬂl)
> to or (&) = to B to )

The moments for the eyuivalent bodies of revolution co be written with
the aid of eguation (9), for p = 0, as

f = 5 t(x,y,0,0)dx day (A2)

With the definitions of equation (Al), equation (AZ) is made dimensionless
as follows:
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Finally, the relationship between the dimensional and dimensionless zero=-
1ift wave drag for an equlivalent body of r:volution of a complete wing is
given by (see eq. (16))

e v
D(B,6) = nq (to %) bip 2, 9> (A6)
D b = | ¢
P (B ¢’ 8> [z(sb/c, 0) }

Inspection of equation (2) indicates that Tor a given configuration

D(B) = ma <;o g;fﬁ (ﬁ g) »

where

nb, / B2 ) (A?)

1N
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where
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D <é a) = o= k/; D </ = g} ds (A9)

Wings in the Presence of Bodies

For a given configuration the present method requires ceparate calcu-
lations of the wuve drag of each component wlone. Hence, the n limits
of integration in equation (A3) for onme punel of un exposed wing (or tail)
would be from the wing-body juncture, 7 = M. (£), to the wing tip, n = 1.
Calculation of the moments ig obviously simplifica if the 17 limits of
integration are constunt from O to 1. This is accomplished by assuming
a constant wing station for the wing-body Jjuncture which is an average
wing station of the actuul juncture and vy rendering the resulting exposed
wing punel dimensionless with respect to the conditions at thig averaged
wing-body Juncture. Use of the averaged wing=-body Juncture rather than
the contour of the actual wing-body Jjuncture has been found to rave a
negligivle effect upon the drag calculations except in caseg of severe
body indentations and in cases where the body radius is of the same order
of magnitude as the wing thickuess at the wing-body Juncture. Thus,
the x coordinates can be divided by the half-chord of the wing at the
Juncture, 01/2, the y coordinates can be divided by the semispan of the
exposed wing bl/2, and the thickness coordinates can be divided by the

o
wing maximum thickness at the Juncture, t;. In this manner equation (A8)

can be written
o] . i
o 1) =/, 01
D(B) = nu (%1 EI> D <L Ei> (AL0)

Most practical wing (or tail) plan forms have straight leading and trailing
edges; hence, by/cq = b/c. It is convenient, therefore, to write equa-
tion (ALO) in a form similar to that of eyuation (A8); that is,

D(p) = (to Ef(%f@fﬁ \/B E} (a11)

where
t
T = ??
(A12)
Ty
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SYSTEMS OF BODIES OF RE JOLUTION

Single Body of Revolation

The moments of o single body of revolution are determined from the
distribution of the vody us given by e juation (2ha); thut is,

1

Moe =2 [T s(x) ax (A13)

J

N fer

iz convenlent, therefore, to render o voiy of revolution dimensionless

dividing the x (.oorq:umues vy the half-body length, 1/2, und by

dividing the area distrivution by the maximum frontal area of the body, S,.

Thus

Equations for

(ALL)
= S{x SLED
3(8) = = L - 5
o 20

this manner the dimensionless momente of equuition (_v"‘sl’j) can be aefinea

- [ ) 1 . _

I O £ k 801 e

Mok = SNkl W /F s(g)e ds (AL)
Soll/2) voaq

Lho, ;o and D Tor oosingle body of revolution are optaired

1
trom ecuctions (Ad), (A ), and (A7), respec.ively, by repi_acinb to( )
and c/E by 5q a.nd Z/Q, respectively. A siigle body, of course, is

ir 3

ependent of f and 8. Hence, {rom equat.on (A6) or (A6) the relution-
iy between the dimensional and dimensionlesg wero=litf's wave cruyg Lor u

single body of revolution 1s glven by

o) ) (A16)
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Two or More Booeles ol Revolubio:n.

Indivicdual dinensionless cooruinnte systems wure used to coleuliie
the wave drog ol cuch body 2lose,  To caleulute the ianterference Letwee
palrs of bodies of revolution, however, it has been found more convenient
to render euwch pulr of booies u*meuslonless with respect to the lenghn
snd maxdimun frontal aren ol only one of the bodieg. Usually the largest
vody The dimensionlecs yuantities Iy, ﬁn, and D for
interie wtlons between pairs of sheured bodies (see appendix T )
are ootaanu in tre munner described above for a single body. In addition,
quuntities which are o function of (gb/c, 8) are repluced by (Bd/2, 8),
where o 15 the laberal spacing of the bodier ag ghown for example in
sketeh (g), ana ¢ 1s the length of thut body upon which the dimensiorn-
less guantities are vased.

For the convenience of those who may use the present method the
Lyo(iib/e, 9) of equation (Ah) are listed below for n up to and includ-

ing &. The parameters Pb/c and @ have been omitted from the notation
in the interest of simplicity.
\
Log = ﬁoo
Lag = #(c/1)Von
Tao = I“oo + 1o(e/ ) Mbe
Loo = =1.(c/1)Hpy + ji(C/l)Bﬁos
) (AL7)
Leo = Moo (¢/1) oz + 80(c/2) *io 4
Lo = oh{c/1)g, - lGo(c/z)Sﬁos + 192(c/1)" M.,
Teo = ~bilhg + 100(c/1)%Ms - 450(c/1) Ty + 143(e /1) Mos
~ . S , 7~
Lo = -h0(c/1)Voy + L50O(c/ 1) Moo - 13th(c/7)" Mo5 024k (c/1) Z
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APPENDIX B

CONCEPT OF SHEARED CONF:'GURATTIONS

With the supersonic area rule, one cal.culates the zero-lift wave
drag of a configuration as the average of that of a series of eguivalent
bodies of revolution. The normal cross-sectional area distribution of
these eyuivalent bodies is obtained as the frontal projection of the area
distribution intercepted on the given conf:l guration by a set of parallel
obligue planes tangent to the Mach cones. In reference 8 a new concept
wag Tirst introduced which permits the use of the normal cross-sectional
area distributions of a series of sheared configurations which, within
the slenderness reyuirements of the supersonic area rule, are considered
equal to those of the eguivalent bodies obtained in the manner Just
described. In reference 4 the concept of cheared configurations was
employed as a simplified technique for fincing the contribution of wings,
tails, and pairs of bodies of revolution tc the area distribution of the
eyuivalent bodies of revolution. The prescnt method employs the concept
of sheared configurations as a simplified techniyue for finding the
moments and lengths of the various componer.ts of the eyuivalent bodies
of revolution. Therefore, a brief review «f this concept is presented
below for wings, tails, and pairs of bodie:s of revolution.

WINGS AND TATLS

Wings

Complete wings.- A complete wing is stown in dimensionless coordinates
by the solid lines in figure 2(&). This wing is made dimensionless with
respect to conditions at the vertical plane of symmetry (see appendix A).
The traces in the §¢,n plane (see fig. ©(¢)) made by the intersection
of the obliyue planes and the §&,n plune ¢re inclined to the 1 axis
at an angle ¥ so that ¥ = tan™}[(3b/c)ecs 9], Hence, the traces
through the “0-percent chord at the wing tip and the ¢ axis (see
lines XX and YY in fig. 2(a)) define a lcngitudinal distance
| (Bb/c)cos 6]. 1In accordance with reference 4 the cheared configurations
are formed by shearing each element of the upper wing panel a distance
I(Bb/c)cos 0 ln forward and shearing each ¢lement of the lower wing panel
a distance | (pPb/c)cos 8|n rearward for ¢ < 6 < x/2 (see the dashed
lines in fig. 2(a)). Tor 6 = ﬂ/E, the sheared and given configurations
are ldentical. TFor ﬂ/E < 8 < n, the upper and lower wing panels are
sheared rearward and forward, respectively. However, in view of symmetry
of a pair of wing panels only the values ot 0 <9 < ﬂ/Z are considered.
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Within the slenderness requirements of the supersonic area rule (see the
METHOD section), the normal cross-sectional area distribution of the
sheared configurations is identical to the frontal projection of the
area distribution intercepted on the given configuration by the oblique
planes. From figure 2(a) it is seen that the tangent of the sweep angle
of the 50-percent chord line of the upper and lower sheared wing panels
can be defined by

oloc’

Ky =Ko - B cos @

(B1)

'

KL =Koy + B % cos 0

Addition of the two parts of equation (Bl) yields the following relation
for the upper and lower wing panels.

Ky, + Ky = X, (B2)

Thus, for a given B and § +the sheared wing panels are related to the
proper equivalent bodies of revolution by the single parameter K.

Exposed wings.- The exposed wing panels of a wing-body combination
are shown in dimensionless coordinates in figure 2(b). Since these wing
panels are made dimensionless with respect to conditions at the wing-
body Jjuncture (see appendix A), it is convenient to consider a separate
coordinate system for the upper and lower exposed wing panels., The 3
axes of these separate coordinate systems are separated in the spanwise
direction by a distance 2m; (see fig. 2(b)). The distance 1; is the
ratio of the body radius at the averaged wing-body juncture to the semi-
span of the exposed wing panels., With respect to the coordinate system
of the complete wing, the semispan of the complete plan form is 1 + M1 -
Hence, the trace XX in figure 2(b) through the 50-percent chord at the
wing tip and the ¢ axis defines a longitudinal distance
| (Bby/cy)cos 61(1 + my). The sheared configurations of the exposed wing
vanels are formed by shearing the plan form as before. As the exposed
wing panels are sheared with respect to origin of the complete wing
(0 in fig. 2(b)), the origins of the coordinate systems of the separate
exposed wing panels become longitudinally separated a distance
A = 2[(Bby/ey)cos 01, as shown by the dashed lines in figure 2(b).

The origin of each panel is translated, in opposite directions, a distance

[(Bby/cy)cos 61my. Since by/cy = b/c for plan forms with straight

leading and trailing edges, it can be determined with the aid of figure 2(b)

that equation (Bl) also serves to identify the sheared exposed wing panels
with the proper equivalent bodies of revolutions when the equations are
applied relative to the individual coordinate system of each exposed
wing panel.



Tre value of identifying the sheared wing panels with the parameter
K rather than with B and 8 was first demonstirated in reference Y., 1In
reference 4 it was found possible to calculate the area distribution of
the cheared wing panels as a function of &, K, and fixed geometric
properties of the given plan form. As shown in appendix C of this report,
the moments and lengths of the sheared wing panels can also be calculated
as a function of K and fixed geometric properties of the given plan form.

Tails

The shearing concept described above for exposed wings 1s also
upplicable to the exposed portion of tails when the tails are rendered
dimensionless with respect to conditions ot the tail-body Jjuncture.

The proper values of K for horizontal tails are determined from
equation (Bl) with Oyr = fy. For vertical tails either part of equa-
tion (Bl) is used with Oy = 8y + n/2. 'The sheared configurations for
vertical tails are symmetrical in g rather than /2.

PAIRS OF BODIES OF RIVOLUTION

A pair of bvodies of revolution is shown in dimensionless coordinates
by the solid lines in figure 3. The conf .guration is rendered dimension-
less with respect to the larger body, E, nd the lateral distance between
the bodies, d. If the origin of the coorlinate system i1s chosen at the
center of body E, traces in the §&,n pline made by the intersections
of the obligue planes and the §&,7n plane are inclined to the 17 axis
at an angle & so that & = tan~}[(Bd/1glcos 9]. Similar to the case
of cheared wings, each element of body H 1c sheared a distance
I(Bd/ZE)cos 0. Sheared configurations for a pair of bodies of revolu-
tion are symmetrical in x. Hence, for ) <6 < yx/2 bvody H is sheared
rearwvard. For & = n/2 the sheared and g.ven configurations are identical,
For n/: <6 < n bvody H is sheared forvard as shown by the dashed lines
in figure 3. For a glven P and 6 the sieared configurations can be
related to the proper equivalent bodies ol revolution by the single
parameter & which indicates the longituiinal separation of the centers
of the cheared bodies; that is,

d

- cis O (83)
E

SJ:‘50+B

where &g 1s the longitudinal distance, in dimensionless coordinates,
between the centers of the given bodies (;ee Tig. 3).
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APPENDIX C

MOMENTS AND LENGTHS FOR SHEARED WINGS

AND TAILS

Zero-1lift wave-drag calculations by the present method require a
knowledge of the moments and lengths of the various components and pairs
of components of a series of equivalent bodies of revolution (or sheared
configurations). As mentioned in the METHOD section, the moments and
lengths of slender-body-of-revolution components alone are relatively
simple to determine because the area distribution of the sheared com-
ponents are independent of Mach plane orientation. The lengths of pairs
of these components are also relatively simple to determine, since, as
shown in appendix B, the effect of changes in 6 on the sheared config-
urations of such components is merely one of translation of one body
(see fig. 3). The area distribution of sheared wing and tail components
on the other hand, i1s dependent upon 0. Consequently, the moments and
lengths required are more difficult to determine. Therefore, this
appendix presents a technique for determining the moments and lengths
of wings and tails required by the present method to calculate the zero-
lift wave drag of each panel alone plus the interference between panels.,

In the following analysis, use of the term "wing(s)" will be construed
to include both wings and tails. Application of the results to tails is
made merely by means of the proper value of K for the tails as previ-
ously described in appendix B.

The results of the following analyses are applicable to a large yet
restricted group of wings. This group satisfies the following conditions:

i. The spanwise variation of the “H0O-percent chord line is linear,

ii. The boundaries of the plan form, the spanwise variation of thre
local chord, and the spanwise variation of the thickness along lines of
constant percent chord can be expressed analytically,

iii. The wing has the same airfoil section at all spanwise stations;
that 1s, only spanwlse variations in thickness and/or thickness ratio are
allowed.

Condition (iii) can be relaxed to include wings with one airfoil section
out to a discontinuity in plan form, for example, a fence or extended
leading edge, and a different airfoil section from the discontinuity out
to the wing tip. 1In such cases, each portion of the plan form is treated
as a separate entity.
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This appendix presents the results only for trapezoidal plan forms
with taper ratios from O to 1. Moments anl lengths for other plan forms,
such as an elliptic plan-form wing can be O>btalned by following the same
technique presented herein and inserting tne proper analytical expressions
for the plan form and the spanwise variation of the local chord (or
half-chord).

MOMENTS AND LENGTHS FOR THZ CALCULATION
OF THE DRAG OF ONE WING PANEL

Moments

The sheared plan form of one exposed wwing panel of a wing-body
combination is shown in dimensionless coordinates in figure 4. As shown
in appendix A, the moments of one sheared wing panel can be expressed as

1(po/c, o) ‘
Mok <% %; 9) = % L/\l Jﬁ T <E)U)B %) ?) Ekdg dﬂ (Cl)

It will be recalled that this definition requires that the moments be
calculated about the midpoint of the total length of the sheared wing
panel. It has been found expedient to cal:zxulate first the moments about
the axis through the origin of the coordinate system shown in figure 4
(¢ = 0) and then transfer these moments, dzsignated Mgy '(Pb/c, 8), to
an axis through the midpoint of the total length. Thus

EE(Bb/C) 67n) b k
Mok ( z? > f f TLE,M,B =, 9> £7dE dn

gl(Bb/C ; ) (C2)

where €;(Bb/c, 6,n) and Ex(Bb/c, 6,n) are functions which define the
leading and trailing edges of the sheared plan form, respectively.
Equation (C2) can be simplified somewhat by replacing the combined
variables Bb/c and 6 by the single param2ter K (KU or Kj,) as described
in the METHOD section (see eq. (25)). Hencz,

£2(K,n)
Mok (K) = f f T (e, ERae an (C:
n=o0 v ¢-=

L
~—
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As shown in appendix C of reference 4, the plan-form dimensionless
thickness distribution for plan forms satisfying the above mentioned
restrictions can be written

T(E)W)K) = Q(W)T[Q(E)W)K)] (ch)

where &(n) is the spanwise variation of the dimensionless thickness along
lines of constant percent chord, T[a(f,n,K)] is the local airfoil section
dimensionless thickness along lines of constant percent chord, and
a(&,n,K) defines lines of constant percent chord. In other words, the
function a(g,n,K) expresses any point £,n 1in any sheared plan form

(for any value of K) as the chord station of the local dimensionless
airfoll section. The chord station is measured relative to the local
50-percent chord as indicated by

a(e,m,K) =a = &80 0 1 <a< (c5)

In eguation (C9) &(n) is the spanwise variation of the local dimensionless
half-chord, which, for the plan forms considered herein, is given by

&(n) =1 - B (c6)
In equation (C6)
B=1-NMn (cT)

and Ay 1s the taper ratio of the exposed wing panel. From equations
(C5) to (C7) equation (Ck) can be written

T(&,1,K) = o(n)r(a) (c3)
where
_EKn .
o TEy 1 <a<1 (c9)

Substituting equations (C8) and (C9) and the equations for tq(X,q)
and £5(K,n) (see fig. 4) in egquation (C3), making a change of variable
from & to a, and first performing the integration with respect to «
yields

1 1
floie ! (K) = f o(n) 2 f (@) [Knt (1-Bn)a T (1-Bn)da dn (c10)
il



Now

1
~

(K (1-By)a)®

where

k
&
~ X k-m o
Mok'(h) = />‘ CmK = : “
n=0 ==l ~ =0
(c11)
Let
- 1 )
I, % [\ T () Mo (c12)
Ygm—
and since
m+1
m+1 T mEL
(o)™ = ) ()T
r=0
equation (Cl1l) becomes
_}i 41 [‘l
~ \\ ko k-m T k-m4r X
fige (K) = ) CpK I, Z (-1)7c, BT J i e(n)dan  (CL3)
n=o r=0 n=0
Let
k"‘ r 1
By oy = f o) an (c1k)
J 1=0
Then
k m+1
~ . kK - ' D (ST I
Mok ' (XK) = Z chk 2 (=1)"CL "B By pyrIn
r=0

m=0
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Finally, if

M+1 T -
Fyp = E; (-1)TcE B .y (c15)

r=0

the moments about the axis through the origin of the coordinate system
of the sheared wing panel (& = 0) are given by

k
Mok ' (K) = }; o KM T (c16)

m=0

The physical interpretation of equation (Cl6) is that the moments
are functions of the single parameter K, which identifies the sheared
wing panel, and the geometric properties of the given wing panel. As
indicated by eaquation (ClS), Pym 1s a function of the taper ratio of
the given wing panel and the spanwise variation of the dimensionless
thickness of the given wing panel along lines of constant percent chord;
that is, Ay enters through B (see eq. (C7)) and &(n) enters through
Egomir (see eq. (Cl4)). It should be recalled (see restrictive condi-
tion (ii) above) that &(n) is a known analytical expression; therefore,
Ex-msr can always be evaluated with little or no difficulty. Several
practical examples of &(n) are tabulated below for the plan forms
discussed herein.

Thickness

characters stic o(1) Definition of constants
Constant
thickness ratio 1-Bn B (see ea. (C7))
Linear variation thickness ratio at =1

. s . - - G = 1-
in thickness ratio (l BU)(l Gﬂ) thickness ratio at 7n=0

Linear variation

in thickness l—HT] H = 1- thickness at n:l

thickness at n=0

The guantities I, are integral functions of the dimensionless airfoil-
section thickness distribution, 7(a) (see eq. (Cl2)). When 7(a) is
known analytically I, can also be evaluated with little or no
difficulty. Generally, however, an analytical expression for T{a) may
not be available. In these instances the evaluation of eguation (C12)
requires special treatment. A simplified technique for finding I, for
airfoil sections with a nonanalytic thickness distribution is presented
in appendix E.
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It remains to transfer the moments fron the axis through ¢ =0 to
an axis through the midpoint of the total length of the wing panel. With
the aid of sketch (h) it is seen that such an axis passes through

7 7
}

|
!
|
! ,
/S

|

I e

Direction of V

atr flow
> — . — €
-1 0 AwlK) t K (K+X,)

Sketch (h)

¢ = Ay(K) where Ay(K) indicates the moment transfer distance (und
direction relative to the axis through ¢ = 0) for a sheared wing panel
alone, The analytical expression for the moments calculated about the
£ = AW(K) axis is

flox (K) = & f f 78, m,K) Leay() 15ae an (c17)
R
Since
LS
[e-ny(K) 1S = 2: (-1) 5B e85 Ay () 1°
5=0

equation (Cl7) can be written
k
~ s k s P - .
o) = ) (D801 2 [ [ w08 % an (o)
$=0 LI~ -
By definition from equation (C3)

ees) (K) = 2 (&,n,K)E5"5qe a
M5 (k-5) = fn f& n n

which defines moments about the € = 0 axis. Therefore, moments about
the ¢ = Ay(K) axis are given as « function of the moments about the
£ = O axis as
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K
Mo () = j{; ('l)scg[ﬁw(K)]Sﬁé(k-s)(K) (c19)
s=0

Values of AW(K) for various values of K cannot, of course, be
determined until the total length of the sheared wing panel, zw(K), is
known. Therefore, AW(K) is evaluated in the following paragraph in
conjunction with the evaluation of 1y(K).

Lengths and Moment Transfer Distances

The analytical expressions for the total length and moment transfer
distance for each sheared wing panel alone have different forms depending
upon the value of K relative to B. Sheared wing panels for ranges of
K< -B, -B<K<B, and K > B are shown in figure 5. Cousider the
sheared wing panel for K > B shown in figure 5(c). Actually the length
ratio [c¢/1(X) ]y or [E/T(K)]y is of interest. From figure 5(c)

1K) = 1+ (Keng) (c20)
and

Ay(K) = (K+Ay) = % iw(K)
which, from equations (C7) and (C20), becomes

Ay(K) = 5 (K-B) (c21)

N+

Since & = 2, from equation (C20)

ol e
1K)y L+(K4+ny)

which, from equations (C7) and (C21), can be written

c _ 1 oo
[Z(K)]w L+ (K) (c22)
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Tnow osimilor soomer  Ay(K) and [e/1(K) ]y can be determined for the ranges
of K defined by the cheuared wing panels in figures »{a) and “(b). The
results are tabulated below:

Morment trunsfer distancen and length
ratios for sieared wing »anels alone
Shedared
wing panel, K 2-B [|-B<IZ<B K >3B
K range
(X)) (1/2) (k+B) 0 (1/2)(k-B)
[ c } 1 | L
1(K) y 1-Ay(K) Lo (K)

MOMENTS AND LENGTHS FOR TIE CALCULATION
OF INTERFERENCE DRAG BETWELN WING PANELS

Moments

Moments for the upper and lower sheared wing panels used in the
interlerence culeulations are determined n the same general manner as
in the case of the drag caleculations for one sheared wing panel alone.
The momencs used in the Jdrag calculations for one sheared wing panel
clone which were cualeuloted about the €& - O wuxis by equation (C16)
ey also be used in Uhie interlerence calcilations to obtain the moments
wbout the widpolnt of the total length of the combined sheared wing
ane Lo, Values of Mok’(K) ure selected 'or the upper and lower wing
punels 1n the ordered puirs indicated by cquation (31). These moments,
it congunction withi the respective upper (nd lower transfer distances for

4

Liie inserrerence culeulations, Ary(K) and A (K), are used in equa-
tion (CLlU) to obtain values of My, (K) fo» interference. The actual
trunsfer distances are, again, dependent -ipon the combined length of
both sheared wing panels.

Lengthe and Moment Trans’er Distances

The analytical expressions for the total length of both wing panels
and the separate moment transfer distance for each wing panel used in the
interference calculations for a sheared p .an form have different forms
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depending upon the vulue of K, relative to B und upon the value of
Ky, relative to Ko und to 3. BSheured plan forme defining the runges
of critical values of Ky, B, anda Ky, are shown in figure 6.

Rather than express A(K), AIU(K), AIL(K), and [c/1(K)]; as 2
function of Ky and Ky, it has been found convenient to make use of the
relationship between Ky and Ky, given by ecquation (31) and express all

quantities us o function of Ky,. TFor all the sheared plan forms of
fipure 6

AK) = ny (Kp,Ky)
but from ecuation (31) one can write
AK) = 2m (Kp,Ko) (ca3)

Consider the plan forms shown in figure 6(e) for K, > B and
K1, >(B+2K5). From the figure

1l

1o(K) = (Kp+na) + a(K) - (Kg-Ap) (c2h)

ary(€) = 2 17(K) + (Ky=ny) (c29)

a1 (K) = (Kpang) - = 1(K) (C6)

roj-

From eguation (31) eguations (Coh) to (C26) become

17(K) = 2(KpKo+r1) + A(K) (co)
apy(K) = % [2Ko+A(K) ] (c28)
ar (K) = 5 [2Ko-n(K)] (c29)

Finally, since ¢ =2
c 1
= (c30)
L(K):,I K1,-Ko+ Ap+ % A(K) ’

In a similar manner AIU(K), AIL(K), and [C/Z(K)]I can be determined for

the ranges of critical values of Xy, B, and Ky, defined by the other
sheared plan forms in figure 6. The results are tabulated below:



Moment trunsfer distances and langth ratios for the

interference between wing panels

>f sheared plun forms

Given

plan form, 0<Kg £B 0 =Ko =3 O=Ko<B
Ko range and Ko > 3 and Ko > B
Sheured
vlun form, { Ko < Ky, < B| B¥ < Ky, <(B+ Xop) Ky, >(B+Xo)
Ky, range
A1y (K) (1/2)aK) | (1/2)[Kr-B+aK) ] (1/2)[Ko+ar(K) ]
o1 (K) -(1/2)a) | (1/2) [KL-B-aK) ] (1/2)[2Ko-n(K) ]
[ c ] 1 1 1
LK) | B(1/2)AK) | (1/2) [Kpna+Len(K) ] | Kp=Korh+ (1/2)A(K)

Limiting values for the

determined from the relation:

Ky range for sheared plan forms can be

KL+KU=2KO

AK) =

1 (KL-Ku) - 2n1 (KL-Ko)

*PFor Ko > B

the lower limit B

is r:placed by Kg.




APPENDIX D
SAMPLE CALCULATIONS

Sample calculations of the dimensionless zero-lift wave drag for
several of the configurations discussed in this report are presented in
order to cemonstrate the computing procedure in detail. From eqgua-
tions (A3) to (AQ) the general computing procecure can be stated as
follows.

To calculate the drag contribution of each component or the inter-
ference vetween cach palr of components of an equivalent body of
revolution

1. Determine the total length of each component or of each pair of
components and calculate the moments about the midpoint of this length.
2. Calculate the length ratics for each component or pair of

components.
N 3. Witk the information of steps L wund 2 caleulate the guantities
Lno(pb/c, 9) (see eq. (AL)).

L. With the information of step 3 it is a simple matter to evaluate
equations (A)) und (A?), the latter of which represents the dimensionless
zero-lift wave-drag contribution of one equivalent body.

5. The results of step 4 for aull equivalent bodies are then graph-
ically averuged according to eguation (A9) to obtain the dimensionless
zero-11Tt wave drag of each configuration component azlone or the inter-
ference between components, as the case may be.

If desired, the results of step U for the drag of each component and
the interference between components may be sumned before undertaking
step 5. Dimensional values are obtained, of course, by evaluating the
coefficients of equations (All) or (Al6) for airplane configurations or
systems of bodies of revolution, respectively.

SINGLE BCDY OF REVOLUTION

From equation (34) the dimensionless area distribution of a Sears-
Haack body can be written

w

S(e) = (1-£2)2 (p1)



e totnl lengbh is thut of the body. Using equation (D1) in eguation (r1)
the morents are culculated to ve

* Mok k
Ol 3/ 1
211/¢ B
4 ‘\/64 5

FRFRH | ¢

For v sinucle body alone the Lleugth ratio is unity. Hence, from egua-
tion (ALT)

Lzo = /b

and all other Lpg = O for n > . Therelore, from eguutions (20) ana
(1), the dlmensionless vero-1ift wave drag =t Mach number 1 is

D= 2(5/M)° = 9/5 = 1.185 (D)
PATR OF TODIES OF REVOIULION

The total vero-lift wave drap will be c(alculated for the pair of
Seurs-lHauck bodies chown in sketeh (g) for ¢nly M = 1, since thes
caleulations are tyvical of those for each eguivalent body reguired for
M > 1. The total zero=-lift wave drag for 1} = 1 is given by (cee

eq. (0))

Dr = Dy + Dr + Drx (D3)

The {irot two terms of euuztion (D7), respectively, represent the drag
cotbributions of bodales E and I alone and are given by equation (p2).

In evaluating the interference term, ﬁLH’ the dimensionless value
of the combined length of both bodies 1s 4. The moments of each body
(bout wn axis throug the origin (see above table for single body of
revolution) must be transferreda Lo an axls through the midpoint of the
total length. It cun be seen from sketch (1;) that such an axls passes
through the tuil of body E and the nose o' body H. Hence, in
dimensionless coordinates, the transfer disances are

AN 1

Il

Ny o= =1



for podies B and i, respectively. From eyusblion (D4) aud from use of
the moments calculated above Tor a single body of revolution usn wvalues
of Mgx', eguation (Cly) yields the following moments wzbout the midpoint
of the total length of toth bodien,

I Mok s Mok

O | 3/k Lo #3/4

2 7/‘3 3 T J/d )

4 99/61L F lhz/64
6 heo/1oy 7| F663/108
(-) fov odd k 1s for wouy &

Tre ri.tio of the length oi euch inalvidual vody to the total length of
vodies i 1/W. flence, frow eyuation (Al7) the vuantities Lpo for both

n ino n E’HO
2 3/4 3 73/2
It o/ 5 0
-35/6kh 7 +3/32
8 39/128 9 F3/52
Upper sign for cdd n  is for body E

Using the above informasion in equations (28) and (27) yields

Dpy = 0.20L (D5)

Finully, from uce of equablions (D) wnd (DH) in equation (D}), the dimen-
cionless total zero=-lift wave drag 1o

~T = 2,450
COMPLETE WING

Calculations of the dimensionless zero-1ift wave drag are presented
for a family of diamond plan-form wings (see sketch (b)) which have
biconvex airfoil sections of comnstant thickness ratio. Calculations have
been mude for o Mach number range corresponding to values of Bb/c fron
0 to A,



The important dimensionless guantities describing the plan form,
the airfoil section, and the spanwise variasion of the thickness aloug
linec of constuant percent chord are given, respectively, by

Ko = A =03 B = . (D6)
() =1 - aZ (D7)

o(n) =1 -1 (D&)

The value of 7(a) given by equation (D7) is actually for o purabolic-urc
wirfoil section. However, for values of the thickness ratio up to avout
2

oopereent, this is a sotisfactory approximasion,
Caleulutions for the Wove Driyg of Each Wing Punel Alone

Initially one debvernidnes the range of rulues of K for which the
caleulations are Lo be made, Bince Ko = O und((jb/c)muY :
of the wvalues of K for which the moments ol one wilng p=n

caloulntod e deterndned from equution (25 U KU'L” =
LIl

The nwo:ents of each sheured wing punel wre fdrot calculated about
the O-percent chord line at the plane ol sonmetry. From cowibilon:s (Cl&)

ra (D,)

l -
f (L-02)al da

) -1

alrs

Al

1 1 )
—_— - — ) ; 1 even
m4+ 1. m+3

0 ; m odd

Values of 0 < m <

-

are reauired.
From equations (Cli) and (D8)

N K-
Byomer = / (L=n)n= " Fan

o}

1 1

Bamr = K-mir+l = Ke1+r42 (p10)
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Volues of O <(k-m+r) < 8 are required. From use of the results of
equation (D1O) in eguation (C15) values of Fyxp, are determined for

0 <k < 7and 0<m<k., With Fyy, and I, determined, moments ubout
the £ = O axis are determined for the sheared wing panels by use of
the desired values of =3 <K < 3 in equation (CLO). Because the
airfoll section is symmetrical about the S0-percent chord, in this cusce

MORI(K) for k even

tl

Mok ' (-K)
Mok ' (=)

_ (DLL)
~Mok ' (K) for k odd

1l

Thus, only values of 0O < K < 3 are necessary.

flext, the moment of each sheured wing panel alone must be transferred
to an axis through the midpoint of the total length of each slhearea witg
panel, From the table of apperndix C for the sheared wing panels alone,
the transfer distances ana length ratios are

K runge Ay (K) Le/1(K) Ty
K < =1 (1/2) (K+1) 2/ (1K)

-1 <K <1 0 1
K> 1 (1/2)(K-1) 2/(14K)

With the above values of AM(K) and the values of Mok'(K), vulues of

Mok (K) are determined from equation (Cl9) for O < k < 7. For this speciul
case, the relationships of equation (D11) also apply to the moments aboutb
tihe midpoint of the total length of each sheured wing panel. WwWith the
information now available the dimensionless zero-lift wave drag of the
upper and lower sheared wing panels alone can be calculated from equa=-
tions (23), (22), and (21) for 2 < n < 9. The results are plotied in
figure 7 as a function of K. It will be noted that for this case,

ﬁw(K) is symmetrical about K = 0. This is again the result of the
symmetrical airfoll section. In view of the relationships of equa-

tion (D11) it can be seen from equation (ALl7) that

Tmo(=K) = Tpo(K) for n even
~ (D12)
~Lno (K) for n odd

1l

Lo (K)

Since [ino(K)]g is reguired (see eq. (22)) und the length ratios are
symmetrical about K = O, Dw(K) is necessarily symmebtrical about K = 0,



Colewlations for the Interference Wave Drag Between Wing Punels

To calculate the interfererice belween wing panels the ordered palrs
of upper und lower sheured wing punels ure first determined from equi=
tion (31); thus

Ky = =Ky, (D15)

The moments, ﬁok'(K), for the ordered pairs of sgheared wing punels must
be truansferred to the midpoint of the total length of both sheared wing
panels. TFrow: the tuble in appendix C for interference between sheared
wing munels, the transfer distances ana length ratios are

Ky, runge | Arp(K) | A (K) [e/2(X) ]t

0<Kp <1 0 0 1
Kp > 1 0 0 1/K1,

Frouw equubions (9) and (30), values of T, o(K) ure culculuted for the
puirs of upper and lower sheared wing panels for o < n < 9. Again, as

4w result of the symmetry of the given configuration, use of eguation (D1-)
in equation (D12) indicates that the detailed calculations of values of
ino(K) for interference are necessary for only the lower sheared wing
panels., The dimensionless interference zero-lift wave drag between sheared
sing punels iz piven by equations (28) anc (27). The results are plotted
directly us u function of pb/ec cos 8 in figure &. Also shown in

figure ¢ are the dimensionless zero=1ift wave-drag results for each of
the sheared wing punels alone replotted as a function of Bb/c cos 6

from the data of figure 7. It is emphasired that all results shown in
figures 7 and ¢ were calculated using six significant figures.

Calculations for the Total Vvuve Drag of the
Complete Wing

The total zero-lift wuve drag for each complete sheared configuration
is calculated using the form of equation (26) for an eguivalent body.
The results are included in figure 8. The variation of the dimensionless
total zero-l1ift wave drag of the complete wings with Bb/c is obtained
by replotting the total wave-drag results of figure § ugainst 0, for
constant values of Bb/c, and graphically averaging the results as
indicated by equation (20). It should be recalled, however, that complete
plan forms are symmetrical in =x/2. Values of Dp(Bv/c, @) obtuined from
the data of figure ¢ for several values ol Bb/c are shown in figure -
replotted against 6. The dimensionless total zero-lift wave-drag results,
Dp(Po/c), are shown in figure 10.

The data of figure 1(w) were obtainec from use of the results of
figure 10 in equation (33). For this complete plan form by/b = 1,/7 = 1.



L9

APPENDIX E

EVALUATION OF THE INTEGRAL FUNCTIONS FOR AIRFOIL SECTIONS
WITH NONANALYTIC THICKNESS DISTRIBUTIONS

Determination of the moments used in the zero-lift wave-drug
calculations depends upon the evaluation of the integral functions of
the alirfoil-section thickness distribution given in appendix C by

o 1
In = 2 V/\ T(a)aMda (c12)
-1
where T(a) is the dimensionless airfoil-section thickness distribution
for -1 <a <1, Equation (Cl2) can be evaluated with little or no
difficulty for airfoil sections for which an analytical expression for
7(a) is available, such as an NACA four-digit series airfoil section,
The thickness distribution is not available in analytical form for many
alrfoil sections, such as an NACA six-digit series airfoil section. The
thickness 1s generally specified, however, at about 20 airfoil chord
stations. It appears, therefore, that a graphical evaluatioa of egua-
tion (Cl2) is possible. Unfortunately, experience has demonstrated that

the accuracy of such a technigue (e
is insufficient to provide reli- T . L ,
able wave-drag results. Conse- | ——

guently, special techniques are

required to obtain an approximate
expression for the thickness dis-
tribution of an arbitrary airfoil
section, and hence, evaluate equa- JJ
tion (Cl2) analyticzlly.

In appendix C of reference 4
it was found possible to approxi-
mate the thickness distribution of
an arbitrary airfoil section in
analytical form with a series of T L1 \ L )
adjacent parabolic-arc segments of
continuous slope. This is possible T
when the airfoil-section thickness
is specified at a sufficient number r
of chord stations, say I, to define
adequately the thickness distribu- )0
tion, and the slope of the thick-
ness distribution is given for at
least one chord station (see the
lower part of sketch (i)). The o ST
salient feature of this type of | \
approximation which is important i
to the evaluation of equation (C12) Sketch (i)
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iv the fact that the second derivative of the thickness distribution is
constunt over each segment of parabolic ar: (see the upper part of
sketeh (1)). IHence, one may write for the second derivative of the
dimensclonless thickness distribution

"(a) = 7"(x3) = constant for (E1)
1 <41 < (1-1)

The del-ils Tor finding the analytical exyression for 7(a), 7'(a),
and 7"(a) can be found in appendix C of reference 4. With this information
it is possible to evaluate equution (C1l2) in a simple analytical fashion.

If one groups the integrand of equation (Cl2) as 7(a) and oflda,
u partiul integration ylelds

Im:’[

1
] vn+l

e

m+l

(r(1)+(-1)Pr(-1)] - 2o f lew)amﬂda} (22)
-1

Similurly, 1f one groups the integrand of the integrul expression in
equation (E2) as  1'(a) and «™lde, a partial integration yields

Ty = 2 {;L_ (L) +(-1)"(-1)7 = - [T’(1)+('l)m+lT'(‘l)’Pm1}

Tl (le)(m+2j

1
pes [ @™ (et

-1
As o result of the parabolic-arc approxim:tions of 7(a), 7"(a) is

constant over each segment of zrc as indicated by ecuation (E1). Hence,
with the aid of equation (El), equation (FL) can be written

oJ

T-1
- s
i41
~ " . Jie2
Py = T; " (o) [\ at2dn
AN Y.
i=1 <1

witich, after integration, becomes

I-1
~ L m--3 mea
Pn ® 23 Z () (0«1-.1 - ay ) (£9)
i=1
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Figure 5.~ Sketch, in dimensionless coordinates, showing lengths and moment
transfer distances for sheared wing panels.
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